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Curve of Regression
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 Let ( , ) be a 
2-dimensional random variable. The graph 
of the mean value of  given ,  denoted 
by  is called the curve
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Example: Suppose we are developing a model to describe
the temperature of 

 is a mathematic

the dept water i

al variable rather rand

n the sea. Since 
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X

 the depth of the water, 2 
variables are involved; X=depth, Y=temperature. We are not 
interested in making inferences on the depth of the water. With 
X(depth) fixed, the temperature measurements(Y) at different 
places (of depth X) varies.

Linear Curve of Regression
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|In the graph of  , here  depends on  and is called 
the  variable. The variable  
whose value is used to help predict the behaviour of |  
is call

 or 
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x
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Sometimes the values of  used can be preselected and in this 
case the study is said to be , otherwise it is called 
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1 2

1 2Let , ,...,  be  values of  (these points are assumed 
to be measured without error) We are concerned with the  
random variables,
                | , | ,..., | . 

A random variable varies abou

n

n

x x x

x x x n X
n

Y Y Y

|

|

t its mean value.
Let  |

|  
i xi

i xi

i x Y

x i Y

E Y

Y E





 

  

Linear Curve of Regression



BITS Pilani, K K Birla Goa Campus

xi

0 1

Y| 0 1

We assume that the random difference  has mean 0. 
Since we are assuming that the regression is linear we can 
conclude that 
              

Th
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So now we have a data consisting of a collection of
 pairs ( , ),  where  is an observed value of the 

variable  and  is the corresponding observation 
for the random variable . The observed val

i i i

i

i

n x y x
X y

Y

0 1

ue usually 
differs from its mean value by some random amount. 
This idea is mathematically expressed by writing

        

 corresponds to  when  takes valu
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0 1

We draw a scattergram (plot of the points in the 
-planes) and if a linear regression is applicable, 

the points should exhibit a linear trend. Since we 
do not know the true values for  and , we 
s

xy

 

ihall not know the true value for (vertical distance 
from the point ( , ) to the regression line). i ix y



Linear Curve of Regression
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Scatter Diagram
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Figure 1: Data on hours studied and test scores
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Let  and  denote the estimates of    and  respectively. 
The estimated line of regression takes the form 

ˆ                          
Let  be the vertical distance from a point ( ,

Y x

i i

b b

b b x
e x y
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)  to the 
estimated regression line, then each data point satisfies the 
equation   
The term  is ca  lled the or  .

i

i i i

i residual residual
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Linear Curve of Regression
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Least-squares Estimation

0 1The parameters  and  are estimated by 
method of least squares. In the sense that, 
from the many lines that can be drawn through 
a scatter diagram, we wish to pick the one that 
"best fits'' the dat

 

0 1

a. The fit is "best'' when the
chosen values of  and   minimizes the sum 
of the squares of the residuals. In this way we 
are picking the line that comes as close as 
possible to all the data points 

b b

simultaneously.
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Sum of squares of errors (SSE)
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The least-squarea estimate for and  are given by,

.
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Least-Squares estimates and 
estimators 
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The least-squares estimator for the linear 

regression line is   and the 

estimator for the random variable  given 

 is .x Y

Y x

xY b b x

b

Y

b

x

x





  

 

Estimation of Linear regression line 
and conditional random variable
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Given that: =10, 16.75,  28.64,  

170, 2898,  285.625,  
Estimate the linear regression equation

Question:

   
   and estimate  when 2.
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Recall that a simple linear regression model is given by
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Here we show that  is normally distributed with mean  and 

variance .
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1Distribution Of B
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1Distribution Of B
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Since,   and which is a linear combination 
of independent normal random variables, and therefore 
is itself norma

Note that:   Cov( , )=0  [see Ex
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0Distribution of B
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2Estimator for 
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Estimator for  is given by,
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  We divide by ( - 2) so that  becomes 
           an unbiased estimator for .
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0 1

A regresion line is said to be  if we have sufficient 
evidence to conclude that the slope of the the true regression 
line is not zero.
N

Inferences about S

ull hypothesis

significa

 :  0.

Since 
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Confidence interval estimation 
    and Hypothesis testing
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2

( - 2) The random variable  

follows  distribution with ( - 2) degrees of freedom.

Note: n S SSE
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Confidence interval estimation 
    and Hypothesis testing

   1 11 1
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100(1 - )%  Confidence interval for :
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1Hypothesis testing on 
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Example (T ype-2): 
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1Hypothesis testing on 

Alternative 
hypothesis

Critical Region:

β1< β1
0 C={ Tn-2 :  Tn-2 < - t }

β1 >β1
0 C={Tn-2 :  Tn-2 >  t }

β1  β1
0 C={Tn-1 :  Tn-2 <  - t/2 or Tn-2 >  t/2 }
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Inferences about Intercept
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0Hypothesis testing on 
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0Hypothesis testing on 

Alternative 
hypothesis

Critical Region:

β0< β0
0 C={ Tn-2 :  Tn-2 < - t }

β0 >β0
0 C={Tn-2 :  Tn-2 >  t }

β0  β0
0 C={Tn-1 :  Tn-2 <  - t/2 or Tn-2 >  t/2 }
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1 1 1

(a) Estim ate the l

G iven 10,   16.75,   170,    

28 .64,    2898,   285.

inear regression equation, also  
     estim ate the average value of  w hen  2 .

6
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25
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1 0 1
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2

1
0 0 / 2

2

/ 2

C onfidence Interval for :

6 .69

0.914
2

3.355  corresponding  to  ( - 2).
99%  C onfidence in terval [7 .7 , 21 .3]
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0 1

1 1

1
2

/ 2

0

: 0
: 0
0.01

1.25
/

 at 0.01 level with ( - 2) degrees of freedom 
is 3.355 1.25,  therefore we accept . 
So the regression line is not significant.
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Since  and are both normally distributed 
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Inferences about Estimated Mean
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Since     is standard Normal.
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|Confidence Interval on 
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0esis: 14.5  at 1%  level. 

Problem



BITS Pilani, K K Birla Goa Campus

|

2
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Confidence interval on  is given by,

1 ( )ˆ

2 1.675 0.325,   0.584,    0.914,  
ˆ 17.5,

10,  1.860
90% Confidence interval=[16.59,18.402].
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